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Abstract

Mathematics is fundamental for many professions, especially science, technology, and engineering. Yet,
mathematics is often perceived as difficult and many students leave disciplines in science, technology, engineering,
and mathematics (STEM) as a result, closing doors to scientific, engineering, and technological careers. In this
editorial, we argue that how mathematics is traditionally viewed as “given” or “fixed” for students’ expected
acquisition alienates many students and needs to be problematized. We propose an alternative approach to
changes in mathematics education and show how the alternative also applies to STEM education.
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Introduction
Mathematics is commonly perceived to be difficult (e.g.,
Fritz et al. 2019). Moreover, many believe “it is ok—not
everyone can be good at math” (Rattan et al. 2012). With
such perceptions, many students stop studying mathem-
atics soon after it is no longer required of them. Giving
up learning mathematics may seem acceptable to those
who see mathematics as “optional,” but it is deeply prob-
lematic for society as a whole. Mathematics is a gateway
to many scientific and technological fields. Leaving it
limits students’ opportunities to learn a range of import-
ant subjects, thus limiting their future job opportunities
and depriving society of a potential pool of quantitatively
literate citizens. This situation needs to be changed, es-
pecially as we prepare students for the continuously in-
creasing demand for quantitative and computational
literacy over the twenty-first century (e.g., Committee on
STEM Education 2018).
The goal of this editorial is to re-frame issues of change

in mathematics education, with connections to science,
technology, engineering, and mathematics (STEM) educa-
tion. We are hardly the first to call for such changes; the
history of mathematics and philosophy has seen ongoing
changes in conceptualization of the discipline, and there
have been numerous changes in the past century alone
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(Schoenfeld 2001). Yet changes in practice of how math-
ematics is viewed, taught, and learned have fallen far short
of espoused aspirations. While there has been an
increased focus on the processes and practices of math-
ematics (e.g., problem solving) over the past half century,
the vast majority of the emphasis is still on what content
should be presented to students. It is thus not surprising
that significant progress has not been made.
We propose a two-fold reframing. The first shift is to

re-emphasize the nature of mathematics—indeed, all of
STEM—as a sense-making activity. Mathematics is typ-
ically conceptualized and presented as a body of content
to be learned and processes to be engaged in, which can
be seen in both the NCTM Standards volumes and the
Common Core Standards. Alternatively, we believe that
all of the mathematics studied in K-12 can be viewed as
the codification of experiences of both making sense and
sense making through various practices including prob-
lem solving, reasoning, communicating, and mathemat-
ical modeling, and that students can and should
experience it that way. Indeed, much of the inductive
part of mathematics has been lost, and the deductive
part is often presented as rote procedures rather than a
form of sense making. If we arrange for students to have
the right experiences, the formal mathematics can serve
to organize and systematize those experiences.
The second shift is suggested by the first, with specific

attention to classroom instruction. Whether mathematics
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or STEM, the main focus of most instruction has been on
the content and practices of the discipline, and what the
teacher should do in order to make it accessible to stu-
dents. Instead, we urge that the main focus should be on
the student’s experience of the discipline – on the affor-
dances the environment provides the student for disciplin-
ary sense making. We will introduce the Teaching for
Robust Understanding (TRU) Framework, which can be
used to problematize instruction and guide needed re-
framing. The first dimension of TRU (The Discipline) fo-
cuses on the re-framing discussed above: is the content
conceptualized as something rich and connected that can
be experienced and codified in meaningful ways? The
second dimension (Cognitive Demand) examines oppor-
tunities students have to do that kind of sense-making
and codification. The third (Equitable Access to Content)
examines who has such opportunities: is there equitable
access to the core ideas? Dimension 4 (Agency, Owner-
ship, and Identity) asks, do students encounter the discip-
line in ways that enable them to see themselves as sense
makers, building both agency and positive disciplinary
identities? Finally, dimension 5 (Formative Assessment)
asks, does instruction routinely use formative assessment,
allowing student thinking to become public so that in-
struction can be adjusted accordingly?
We begin with a historical background, briefly discuss-

ing different views regarding the nature of mathematics.
We then problematize traditional approaches to math-
ematics teaching and learning. Finally, we discuss pos-
sible changes in the context of STEM education.

Knowing the background: the development of
conceptions about the nature of mathematics
The scholarly understanding of the nature of mathemat-
ics has evolved over its long history (e.g., Devlin 2012;
Dossey 1992). Explicit discussions regarding the nature
of mathematics took place among Greek mathematicians
from 500 BC to 300 AD (see, https://en.wikipedia.org/
wiki/Greek_mathematics). In contrast to the primarily
utilitarian approaches that preceded them, the Greeks
pioneered the study of mathematics for its own sake and
pursued the development and use of generalized math-
ematical theories and proofs, especially in geometry and
measurement (Boyer 1991). Different perspectives about
the nature of mathematics were gradually developed
during that time. Plato perceived the study of mathemat-
ics as pursuing the truth that exists in external world be-
yond people’s mind. Mathematics was treated as a body
of knowledge, in the ideal forms, that exists on its own,
which human’s mind may or may not sense. Aristotle,
Plato’s student, believed that mathematicians constructed
mathematical ideas as a result of the idealization of their
experience with objects (Dossey 1992). In this perspective,
Aristotle emphasized logical reasoning and empirical
realization of mathematical objects that are accessible to
the human senses. The two schools of thought that
evolved from Plato’s and Aristotle’s contrasting concep-
tions of the nature of mathematics have had important
implications for the ensuing development of mathematics
as a discipline, and for mathematics education.
Several more schools of thought were developed as

mathematicians tackled new problems in mathematics
(Dossey 1992). Davis and Hersh (1980) provides an en-
tertaining and informative account of these develop-
ments. Three major schools of thought in the early
1900s dealt with paradoxes in the real number system
and the theory of sets: (1) logicism, as an outgrowth of
the Platonic school, accepts the external existence of
mathematics and emphasizes the form rather than the
interpretation in a specific setting; (2) intuitionism, as
influenced by Aristotle’s ideas, only accepts the mathem-
atics to be developed from the natural numbers forward
via “valid” patterns of mental reasoning (not empirical
realization in Aristotle’s thought); and (3) formalism,
also aligned with Aristotle’s ideas, builds mathematics
upon the formal axiomatic structures to free mathemat-
ics from contradictions. These three schools of thought
are similar in that they view the contents of mathematics
as products, but they differ in whether products are
viewed as pre-existing or created through experience.
The development of these three schools of thought illus-
trates that the view of mathematics as products has its
long history in mathematics.
With the gradual development of school mathematics

since 1900s (Stanic and Kilpatrick 1992), the conception
of the nature of mathematics has increasingly received
attention from mathematics educators. Which notion of
mathematics mathematics education adopts and uses
has a direct and strong impact on the way of school
mathematics being presented and approached in educa-
tion. Although the history of school mathematics is rela-
tively short in comparison with mathematics itself, we
can find ample examples about the influence of different
views of mathematics on curriculum and classroom in-
struction in the USA and other education systems (e.g.,
Dossey et al. 2016; Li and Lappan 2014; Li, Silver, and Li
2014; Stanic and Kilpatrick 1992). For instance, the
“New Math” movement of 1950s and 1960s used the
formalism school of thought as the core of reform
efforts. The content was presented in a structural for-
mat, using the set theoretic language and conceptions.
But the result was not a successful progression toward a
school mathematics that is best for students and
teachers (e.g., Kline 1973). Alternatively, Dossey (1992),
in his review of the nature of mathematics, identified
and selected scholars’ works and ideas applicable to both
professional mathematicians and mathematics educators
(e.g., Davis and Hersh 1980; Hersh 1986; Tymoczko
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1986). Those scholars' ideas rested on what professional
mathematicians do, not what mathematicians think
about what mathematics is. Dossey (1992) specifically
cited Hersh (1986) to emphasize mathematics is about
ideas and should be accepted as a human activity, not
strictly governed by any one school of thought.
Devlin (2000) argued that mathematics is not a single

entity but has four different faces: (1) computation,
formal reasoning, and problem solving; (2) a way of
knowing; (3) a creative medium; and (4) applications.
Further, he contended school mathematics typically
focuses on the first face, makes some reference to the
fourth face, but pays almost no attention to the other
two faces. His conception of mathematics assembles ideas
from the history of mathematics and observes mathemat-
ical activities occurring across different settings.
Our brief review shows that the nature of mathematics

can be understood as having different faces, rather than
being governed by any single school of thought. At the
same time, the ideas of Plato and Aristotle continue to
influence the ways that mathematicians, mathematics
educators, and the general public perceive mathematics.
Despite nearly a half century of process-oriented re-
search (see below), let alone Pólya’s work on problem
solving, mathematics is still perceived of largely as prod-
ucts—a body of knowledge as highlighted in the three
schools (logicist, intuitionist, formalist) of thought, ra-
ther than ideas that call for active thinking and creation.
The evolving conceptions about the nature of mathem-
atics in history suggests there is room for us to decide
how mathematics can be perceived, rather than being
bounded by a pre-occupied notion of mathematics as
“given” or “fixed.” Each and every learner can experience
mathematics through different practices and “own”
mathematics as a human activity.

Problematizing what is important for students to
learn in and through mathematics
The evolving conceptions about the nature of mathem-
atics suggest that choices exist when deciding what and
how to teach and learn mathematics but they do not
specify what and how to make the choice. Decisions
require articulating options for conceptions of what is
important for students to learn in and through mathem-
atics and evaluating the advantages and drawbacks for
the students for each option.
According to Stanic and Kilpatrick (1992), the history

of school mathematics curricula presents two important
and real changes over the years: one is at the turn of the
twentieth century when school mathematics was re-
formed as a unified and applied curriculum to accom-
modate dramatically increased student populations from
diverse backgrounds, and the other is the “New Math”
movement of the 1950s and 1960s, intended to integrate
modern mathematics into school curriculum. The per-
ceived failure of the “New Math” movement led to the
“Back to Basics” movement in the 1970s, followed by
“Problem Solving” in the 1980s, and then the Curricu-
lum Standards movement in the 1990s and after. The
history shows school mathematics curricula have em-
phasized teaching and learning mathematical knowledge
and skills, together with problem solving and some
applications of mathematics, a picture that is consistent
with what Devlin (2000) refers to as the 1st face and
some reference to the 4th face of mathematics.
Therefore, although there have been reforms in math-

ematics curriculum and instruction, there are hardly real
changes in how mathematics is conceptualized and pre-
sented in school education in the USA (Stanic and Kil-
patrick 1992) and other education systems (e.g., Leung
and Li 2010; Li and Lappan 2014). The dominant
conception remains mathematics as products, frequently
referring to a body of static knowledge and skills that
need to be learned and acquired (Fisher 1990). This con-
tinues to be largely the case in practice, despite advances
in conceptualization (see below).
It should be noted that conceptualizing mathematics

as “a body of knowledge and skills” is not wrong, espe-
cially with such a long history of knowledge creation
and accumulation in mathematics, but it is not adequate
for school mathematics nowadays. The set of concepts
and procedures, after years of development, exceeds
what could be covered in any school curricula. More-
over, this body of knowledge and skills keeps growing, as
the product of human intelligence and scholarship in
mathematics. Devlin (2012) pointed out that school
mathematics mainly covers what was developed in the
Greek mathematics, plus just two further advances from
the seventh century: calculus and probability theory. It is
no wonder if someone questions the value of learning
such a small set of knowledge and skills developed more
than a thousand years ago. Meanwhile, this body of
knowledge and skills are often abstract, static, and “for-
eign” to many students and teachers who learned to per-
ceive mathematics as an external entity in existence
(Plato’s notion) rather than Aristotelian emphasis on ex-
perimentation (Cooney 1987). It is thus not surprising
for so many students and teachers to claim that math-
ematics is difficult (e.g., Fritz et al. 2019) and “it is ok—
not everyone can be good at math” (Rattan et al. 2012).
What can be made meaningful should be critically im-

portant to those who want to (or need to) learn and
teach mathematics. In fact, there is significant evidence
that students often try to make sense of mathematics
that is “presented” or “given” to them, although they
made numerous errors that can be decoded to study
their thinking (e.g., Ashlock 2010). Indeed, misconcep-
tions are best thought of not as errors that need to be
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“fixed,” but as plausible abstractions on the basis of what
students have learned—i.e., attempts at sense-making
(Smith et al. 1993). Conceiving mathematics as about
“ideas,” we can help students to play, own, experience,
and think about some key ideas just like what they do in
many other activities, such as game play (Gee 2005).
Definitions of concepts and formal languages and proce-
dures can be postponed until students are ready to con-
sider why and how they are needed. Mathematics should
be taken and accepted as a human activity (Dossey
1992), and developing students’ mathematical thinking
(about ideas) should be emphasized in learning mathem-
atics itself (Devlin 2012) and in STEM (Li et al. 2019a).
Along with the shift from products to ideas in math-

ematics, scholars have already focused on how people
work with ideas in mathematics. Elaborated in detail by
Schoenfeld (in press), the revolution began with George
Pólya (1887–1985) who had a fundamental interest in
having students learn and understand content via prob-
lem solving. For Pólya, mathematics was about inquiry,
sense making, and understanding how and why mathem-
atical ideas (instead of content as products) fit together
the way they do. The call for problem solving in the
1980s in the USA was (at least partially) inspired by
Pólya’s ideas after a decade of “back to basics” in the
1970s. It has been recognized since that the practices of
mathematics (including problem solving) are every bit as
important as the content itself, and the two shouldn’t be
separated. In the follow-up standards movement, the
content and practices have been the “warp and weave”
of the fabric doing mathematics, as articulated in Princi-
ples and Standards for School Standards (NCTM 2000).
There were five content standards and five process stan-
dards (i.e., problem solving, reasoning, connecting, com-
municating, representing). It is widely acknowledged,
also in the Common Core State Standards in the USA
(CCSSI 2010), that both content and processes/practices
are essential and they form the base for next steps.

Problematizing how mathematics is taught and
learned, with connections to STEM education

How the ways that mathematics is often taught cause
concerns
Conceiving mathematics as a body of facts and procedures
to be “mastered” has been long-standing in mathematics
education practice, and it often results in students’ learn-
ing by rote memorization. For example, Schoenfeld (1988)
provided a detailed account of the disasters of a “well-
taught” mathematics course, documenting a 10th-grade
geometry class taught by a confident and experienced
teacher. The teacher taught and managed his class well,
and his students also did well on standardized examina-
tions, which focused on content and procedures. At the
same time, however, Schoenfeld pointed out that the stu-
dents developed counterproductive views of mathematics.
Although the students developed some level of proficiency
in content and procedures, they gained (or were rein-
forced in) the kinds of beliefs about mathematics as being
fragmented and disconnected. Schoenfeld argued that the
course led students to develop a robust and counterpro-
ductive set of beliefs about the nature of geometry.
Seeking possible origins about students’ counterpro-

ductive beliefs about mathematics from mathematics in-
struction motivated Schoenfeld’s study (Schoenfeld
1988). Such an intuitive motivation is also evident in
other studies. Keitel (2006) compared the lessons of two
teachers (T1 and T2) in Germany who taught their
classes very differently. T1 regularly taught the class em-
phasizing routine individual practice and memorization
of specific algebraic rules. T1 emphasized the import-
ance of such practices for test taking, and the students
followed his instruction. Even when T1 one day intro-
duced a non-routine problem that connects algebra and
geometry, the overwhelming emphasis on mastering
routines and algorithms seemed to overshadow in deal-
ing such a non-routine problem. In contrast, T2’s teach-
ing emphasized students’ initiatives and collaboration,
although T2 also used formal routine tasks. At the end,
students in T2’s class reported positively about their ex-
perience, enjoyed working together, and appreciated the
opportunities of thinking mathematically. Studies by
Schoenfeld (1988) and Keitel (2006) indicate how stu-
dents’ experience in mathematics classes influences their
perceptions of mathematics and also imply the import-
ance of learning about teachers’ perceptions of mathem-
atics that likely guide their instructional practice
(Cooney 1987).
Rattan et al. (2012) found that teachers with different

perceptions of mathematics teach differently. Specific-
ally, Rattan et al. looked at these teachers holding an en-
tity (fixed) theory of mathematics intelligence (G1)
versus incremental theory (G2). Through their studies,
Rattan and colleagues found that G1 teachers more
readily judged students to have low ability, comforted
students for low mathematical ability, and used “kind”
strategies (e.g., assigning less homework) unlikely to pro-
mote their engagement with the field than G2 teachers.
Students who received comfort-oriented feedback per-
ceived their teachers’ entity theory and low expectations
and reported lowered motivation and expectations for
their own performance. The results suggest how
teachers’ inadequate perceptions of mathematics and be-
liefs about the nature of students’ mathematical
intelligence contributed to low achievement, diminished
self-esteem and viewed mathematics is only a set of
static facts and procedures. Further, the results suggest
that how mathematics is taught influences more than
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students’ proficiency with mathematics content in a
class. Sun (2018) made a similar argument after synthe-
sizing existing literature and analyzing classroom obser-
vation data.
Based on the 2012 US national survey of science and

mathematics education conducted by Horizon Research,
Banilower et al. (2013) reported that a vast majority of
mathematics teachers, from 81% at the high school level
to 90% at the elementary level, believe that students
should be given definitions of new vocabulary at the be-
ginning of instruction on a mathematical idea. Also,
many teachers believe that they should explain an idea
to students before having them consider evidence for it
and that hands-on activities should be used primarily to
reinforce ideas students have already learned. The report
suggests many teachers emphasized pedagogical practices
of “give” and “present,” perhaps influenced by conceptions
of mathematics that are more Platonic than Aristotelian,
similar to what was reported about teachers’ practices
more than two decades ago (Cooney 1987).

How to change?
Given that the evidence demonstrates a compelling case
for changing how mathematics is taught, we turn our at-
tention to suggesting how to realize this transformation.
Changing how mathematics is taught and learned is not
a new endeavor for both mathematics educators and
mathematicians (e.g., Li, Silver, and Li 2014; Schoenfeld
in press). For example, the “Moore Method,” developed
and used by Robert Lee Moore (a famous topologist) in
the early twentieth century, shifted instruction from
teacher-centered lecturing to student-centered mathem-
atical development (Coppin et al. 2009). In its purest
form, students were presented with mathematical defini-
tions and asked to develop and/or prove theorems from
them after class, without reading mathematics books or
using other resources. When students returned to the
class, they were asked to prove a theorem. As a result,
students developed the mathematics themselves, instead
of the instructor presenting the proofs and doing the
mathematics for students. The method has had its own
success in producing many great mathematicians; how-
ever, the high-pressure environment also drowned many
students who might have been successful otherwise
(Schoenfeld in press).
Although the “Moore Method” was used primarily in

advanced mathematics courses at the post-secondary
level, it illustrates how a different conception of math-
ematics led to a different instructional approach in
which students developed mathematics. However, it
might be the opposite end of a spectrum, in comparison
to approaches that present mathematics to students in
accommodating and easy-to-digest ways that can be as
much easy as possible. Neither extreme is a good option
for K-12 students. Again, it becomes important for us to
consider options that can support the value of learning
mathematics.
Our discussion in the previous section highlights the

importance of taking mathematics as a human activity,
ensuring it is meaningful to students, and developing
students’ mathematical thinking about ideas, rather than
simply absorbing a set of static and disconnected know-
ledge and skills. We call for a shift in teaching
mathematics based on Platonic conceptions to ap-
proaches based on more of Aristotelian conceptions. In
essence, Plato emphasized ideal forms of mathematical
objects, perhaps inaccessible through people’s sense
making efforts. As a result, learners lack ownership of
the ideal forms of mathematical objects, because math-
ematical objects cannot and should not be created by
human reasoning. In contrast, Aristotle emphasized that
mathematical objects are developed through logic rea-
soning and empirical realization. In other words, math-
ematical objects exist only when they can be sensed and
verified by people's efforts. This differs from Plato’s pas-
sive perspective, highlights human ownership of mathem-
atical ideas and encourages people to make mathematics
make sense, termed as making sense by McCallum (2018).
Aristotelian conceptions view mathematics as objects that
learners can actively develop and structure as mathematic-
ally meaningful, which is more in line with what research
mathematicians do. McCallum (2018) argued that both
sense-making and making-sense stances are needed for a
complete view of mathematics and learning, recognizing
that not attending to both stances carries risks. “Just as it
is a risk of the sense-making stance that the mathematics
gets ignored, it is a risk of the making-sense stance that
the sense-maker gets ignored.” (McCallum 2018).
In addition, there is the issue of personal identity: if

students come to avoid mathematics because they are
uncomfortable with it (in fact, mathematics anxiety has
become a widespread problem for all ages across the
globe, see Luttenberger et al. 2018) then mathematics in-
struction has failed them, regardless of test scores.
In the following, we discuss sense-making and making-

sense stances first with specific examples from mathemat-
ics. Then, we discuss connections to STEM education.

Sense making is much more than the acquisition of
knowledge and skills
Sense making has long been emphasized in mathematics
education community. William A. Brownell is a well-
known, early 20th century scholar who advocated the
value of sense making in the learning of mathematics.
For example, Brownell (1945) discussed how arithmetic
can and should be taught and learned not only as proce-
dures, but also as a meaningful system of thinking. He
shared many examples like the following division,
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8Þ576
Brownell suggested to ask questions: what does the 5 of

576 mean? Why must 57 be the first partial dividend? Do
you actually divide 8 into 57, or into 57…’s? etc., instead
of simply letting students memorize how to carry out the
procedure. What Brownell advocated has been commonly
accepted and emphasized in mathematics education now-
adays as sense making (e.g., Schoenfeld 1992).
There can be different ways of sense making of the same

computation. As an example, the sense making process
for the above long division can come out with mental
math as: I am looking to see how close I can get to 570
with multiples of 80; 7 multiples of 80 gives me 560, which
is close. Of course, given base 10 notation, that’s the same
as 8 multiples of 70, which is why the 7 goes over the 57.
And when I subtract 560, there are 16 left over, so that’s
another 2 8 s. Such a sense-making process also works, as
finding the answer (quotient, k) of 576 ÷ 8 is the same
operation as to find k that satisfies 576 = k × 8. In math-
ematics, division and multiplication are alternate but
equivalent ways of doing the same operation.
To help students build numerical reasoning and make

sense of computations, many teachers use number talks in
their classrooms for students to practice and share these
mental math and computation strategies (e.g., Parrish
2011). In fact, new terms are being created and used in
mathematics education about sense making, such as num-
ber sense (e.g., Sowder 1992) and symbol sense (Arcavi,
1994). Some instructional programs, such as Cognitively
Guided Instruction (see, e.g., Carpenter et al., 1997, 1998),
make sense making the core of instructional activities. We
argue that such activities should be more widely adopted.

Making sense makes the other side of mathematical
practice visible, and values idea development and
ownership
The making-sense stance, as termed by McCallum
(2018), is not commonly practiced as it is pertinent to
expert mathematician’s practices. Where sense making
(as discussed previously) emphasizes the process of
making sense of what is being learned, making sense
emphasizes the process of making mathematics make
sense. Making sense highlights the importance for
students to experience mathematics through creating,
designing, developing, and connecting mathematical
ideas. As an example, for the above division computa-

tion, 8Þ576 , students may wonder why the division pro-
cedure is performed from left to right, which is different
from the other operations (addition, subtraction, and
multiplication) that are all performed from right to left.
In fact, students can be encouraged to explore if the
division can also be performed from right to left (i.e.,
starting from the one’s place). They may discover, with
possible support from the teacher, that the division can
be done in this way. However, once the division is
moved to the high-value places, it will require the
process to go back down to the low-value places for
completion. In other words, the division process starting
from the low-value place would require repeated pro-
cesses of returning to the low-value places; as a result, it
is inefficient. As mathematical procedure is designed to
improve efficiency, the division procedure is thus set to
be carried out from the high-value place to low-value
place (i.e., from left to right). Students who work this
out experience mathematics more deeply than the
sense-making described by Brownell (1945).
There are plenty of making-sense opportunities in

classroom instruction. For example, kindergarten children
are often given opportunities to play with manipulatives
like cube trains and snub cubes, to explore and learn
about patterns, numbers, and measurement through vari-
ous connections. The recording of such activities typically
results in numerical expressions or operations of these
connections. In addition, such activities can also serve as a
context to encourage students to design and create a way
of “recording” these connections directly with a drawing
line next to the connected train cubes. Such a design ac-
tivity will help students to develop the concept of a num-
ber line that includes the original/starting point, unit, and
direction (i.e., making mathematics make sense), instead
of introducing the number line to students as a mathem-
atical concept being “given” years later.
Learning how to provide students with opportunities

to develop mathematics may occur with experience.
Huang et al. (2010) found that expert and novice
teachers in China both valued students’ mastering of
mathematical knowledge and skills and their develop-
ment in mathematical thinking methods and abilities.
However, novice teachers were particularly concerned
about the effectiveness of their guidance, in contrast to
expert teachers who emphasized the development of stu-
dents’ mathematical thinking and higher-order thinking
abilities and properly dealing with important and diffi-
cult content points. The results suggest that teachers’
perceptions and pedagogical practices can change and
improve over time. However, it may be worth asking if
support for teacher development would accelerate the
process.

Connecting changes in mathematics and STEM education
Although it is commonly acknowledged that mathemat-
ics is foundational to STEM, mathematics is being re-
lated to STEM education at a distance in practice and
also in scholarship development (English 2016, see add-
itional notes at the end of this editorial). Holding the
conception of mathematics as products does not support
integrating mathematics with other STEM disciplines, as
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mathematics can be perceived simply as a set of tools for
these disciplines. At the same time, mathematics and
science have often proceeded along parallel tracks, with
mathematics focused on “problem solving” while science
has focused on “inquiry.” To better connect mathematics
and other disciplines in STEM, we should focus on ideas
and thinking development in mathematics (Li et al.
2019a), unifying instruction from the student perspective
(the Teaching for Robust Understanding framework, dis-
cussed below).
Emphasizing both sense making and making sense in

mathematics education opens opportunities for connec-
tions with similar practices in other STEM disciplines.
For example, sense making is very much emphasized in
science education (Hogan 2019; Kapon 2017; Odden and
Russ 2019), often combined with reflections in engineer-
ing (Kilgore et al. 2013; Turns et al. 2014), and also in
the context of using technology (e.g., Antonietti and
Cantoia 2000; Dick and Hollebrands 2011). Science is
fundamentally about discovery and understanding of the
natural world. This notion provides a natural link to
mathematical modeling (e.g., Burkhardt 1981). Beyond
that, in science education, sense making places a heavy
focus on the construction and evaluation of explanation
(Kapon 2017), and can even be defined as a process of
constructing an explanation to resolve a perceived gap
or conflict in knowledge (Odden and Russ 2019). Design
and making play vital roles in engineering and technol-
ogy education (Dym et al., 2005), as is student reflection
on these experiences (e.g., Turns et al. 2014). Indeed,
STEM disciplines share the same conceptual process of
sense making as learners, individually or in a group, ac-
tively engage with the natural or man-made world, ex-
plore it, and then develop, test, refine, and use ideas
together with specific explanation. If mathematics was
conceived as an “empirical” discipline, connections with
other STEM disciplines would be strengthened. In philo-
sophical terms, Lakatos (1976) made similar claims1.
Similar to the emphasis on sense making placed in the

Mathematics Curriculum Standards (e.g., NCTM, 1989,
2000), Next Generation Science Standards (NGSS Lead
States 2013) prompted a shift in science education away
from simply knowing science content and procedures to
practicing and using science, together with engineering,
to make sense of the world and create the future. In a
review, Fitzgerald and Palincsar (2019) concluded sense
making is a productive lens for investigating and charac-
terizing great teaching across multiple disciplines.
1Interestingly, Lakatos was advised by both Popper and Pólya—his
ideas being in some ways a unification of Pólya’s emphasis on
mathematics as an empirical discipline and Popper’s reflections on the
nature of the scientific endeavor.
Mathematics has stronger linkages to creation and de-
sign than traditionally imagined. Therefore, its connec-
tions to engineering and technology could be much
stronger. However, the deep-rooted conception of
mathematics as products has traditionally discouraged
students and teachers from considering and valuing
design and design thinking (Li et al. 2019b). Conceiving
mathematics as making sense should help promote con-
ceptual changes in mathematical practice to value idea
generation and design activity. Connections generated
from such a shift will support teaching and learning not
only in individual STEM disciplines, but also in inte-
grated STEM education.
At the same time, although STEM education as a com-

monly recognized field does not have a long history (Li
2014, 2018a), its rapid development can help introduce
ideas for exploring how mathematics can be taught and
learned. For example, the concept of projects is common
in engineering professional practice, and the project-
based learning (PjBL) as an instructional approach is a
key component in some engineering programs (e.g., Ber-
ger 2016; de los Ríos et al. 2010; Mills and Treagust
2003). de los Ríos et al. (2010) highlighted three main
advantages of PjBL: (1) development in technical, per-
sonal, and contextual competences; (2) students’ engage-
ment with real problems from professional contexts; and
(3) collaborative learning facilitated through the integra-
tion of teaching and research. Such advantages are im-
portant for students’ learning of mathematics and are
aligned well with efforts to develop 21st century skills,
including problem solving, communication, collabor-
ation, and critical thinking.
Design-based learning (DBL) is another instructional

approach commonly used in engineering and technology
fields. Gómez Puente et al. (2013) conducted a sampled
review and concluded that DBL projects consist of open-
ended, hands-on, authentic, and multidisciplinary design
tasks. Teachers using DBL facilitate both the process for
students to gain domain-specific knowledge and think-
ing activities to generate innovative solutions. Such
features could be adapted for mathematics education, es-
pecially integrated STEM education, in concert with de-
sign and design thinking. In addition to a few examples
discussed above about making sense in mathematics,
there is a growing body of publications developed by
and for mathematics teachers with specific examples of
investigations, design projects, and instructional activ-
ities associated with STEM (Li et al. 2019b).

A framework for helping students to gain important
experiences in and through mathematics, as
connected to other disciplines in STEM
For observing and evaluating classroom instruction in
general and mathematics classroom instruction in
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specific, there are several widely used frameworks and
rubrics available. However, a trial use of selected frame-
works with sampled mathematics classroom instruction
episodes suggested their disagreements on what counts
as high-quality instruction, especially with aspects on
disciplinary thinking being valued and relevant class-
room practices (Schoenfeld et al. 2018). The results sug-
gest the importance of choice making, when we consider
a framework in discussing and evaluating teaching
practices.
Our discussion above highlights the importance of

shifting away from viewing mathematics simply as a set
of static knowledge and skills, to focusing on ideas and
thinking development in teaching and learning mathem-
atics. Further discussion of several aspects of changes
specifies the needs of developing and using practices as-
sociated with sense making, making sense, and connect-
ing mathematics and STEM education for changes.
To support effective mathematics instruction, we

propose the use of the Teaching for Robust Understand-
ing (TRU) framework to help characterize powerful
learning environments. With the conception of mathem-
atics as “empirical” and a focus on students’ experience,
then the focus of instruction should also be changed.
We argue that shift is from instruction conceived as
“what should the teacher do” to instruction conceived as
“what mathematical experiences should students have in
order for them to develop into powerful thinkers?” It is
the shift in the frame of TRU that makes it so powerful
and pertinent for all these proposed changes. Moreover,
TRU only uses a small number of actionable dimensions
after distilling the literature on teaching for robust or
powerful understanding. That makes TRU a practical
mechanism for problematizing instruction.
Figure 1 presents the TRU Math framework that iden-

tifies five key dimensions along which powerful class-
room environments can be characterized: the
mathematics; cognitive demand; equitable access;
agency, ownership, and identity; and formative assess-
ment. These five dimensions were distilled from an ex-
tensive literature review, thus capturing what the
literature considers to be essential. They were tested
against classroom videotapes and data on student per-
formance, and the results indicated that classrooms that
did well on the TRU dimensions produced students who
did correspondingly well on tests of mathematical know-
ledge, thinking, and problem solving (e.g., Schoenfeld
2014, 2019). In brief, the argument regarding the im-
portance of the five dimensions of TRU Math is as fol-
lows. First, the quality of the mathematics discussed
(dimension 1) is critical. What individual students learn
is unlikely to be richer than what they experience in the
classroom. Whether individual students’ understanding
rises to the level of what is discussed/presented in the
classroom depends on other factors, which are captured
in the remaining four dimensions. For example, you
surely have had the experience, at a lecture, of hearing
beautiful content presented, and then not being able to
do any of the assigned problems! The remaining four di-
mensions capture aspects needed to support the devel-
opment of all students with respect to sense making,
making sense, ownership, and feedback loop. Dimension
2: Cognitive Demand. Are students engaged in sense
making and making sense? Are they engaged in “pro-
ductive struggle”? Dimension 3: Equitable Access. Are
all students fully engaged with the central content and
practices of the domain so that every student can profit
from it? Dimension 4: Agency, Ownership, and Identity.
Do all students have opportunities to develop idea
ownership and mathematical agency? Dimension 5:
Formative Assessment. Are students encouraged and
supported to share their thinking with a meaningful
feedback loop for instructional adjustment and
improvement?
The first key point about TRU is that students learn

more in classrooms that are powerful along the five
TRU dimensions. Second, the shift of attention from the
teacher to the environment is fundamentally important.
The key question is not “Is the teacher doing particular
things to support learning?”; instead, it is, “Are students
experiencing instruction so that it is conducive to their
growth as mathematical thinkers and learners?” Third,
the framework is not prescriptive; it respects teacher au-
tonomy. There are many ways to be an excellent teacher.
The question is, Does the learning environment created
by the teacher provide each student rich opportunities
along the five dimensions of the framework? Specifically,
in describing the dimensions of powerful instruction, the
framework serves to problematize instruction. Asking
“how am I doing along each dimension; how can I im-
prove?” can lead to richer instruction without prescrib-
ing or imposing a particular style or particular norms on
teachers.

Extending to STEM education
Now, we suggest the following. If you teach biology,
chemistry, physics, engineering, or any other STEM
field, replace “mathematics” in Fig. 1 with your discip-
line. The first dimension is about rich content and prac-
tices in your field. And the remaining four dimensions
are about necessary aspects of your students’ classroom
engagement with the discipline. Practices associated with
sense making, making sense, and STEM education are
all be reflected in these five dimensions, with central at-
tention on students’ experience in such classroom envi-
ronments. Although the TRU framework was originally
developed for characterizing effective mathematics class-
room environments, it has been carefully framed in a



Fig. 1 The TRU Mathematics Framework: The five dimensions of powerful mathematics classrooms
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way that is applicable to many different disciplines
(Schoenfeld 2014). Our discussion above already speci-
fied why sense making, making sense, and specific in-
structional approaches like PjBL and DBL are shared
across disciplines in STEM education. Thus, the TRU
framework is applicable to other STEM disciplines. The
natural analogue of the TRU framework for any field is
given in Fig. 2.
Both the San Francisco Unified School District and

the Chicago Public Schools adopted the TRU Math
framework and found results within mathematics suffi-
ciently promising that they expanded their efforts to all
subject areas for professional development and instruc-
tion, using the domain-general TRU framework. Work is
still in its early stages. Current efforts might be best
conceptualized as a laboratory for exploration rather than
a promissory note for improvement across all different
disciplines. It will take time to accumulate data to show
effectiveness. For further information about the domain-
general TRU framework and tools for professional devel-
opment are available at the TRU framework website,
https://truframework.org/
Finally, as a framework, TRU is not a set of specific
tools or guidelines, although it can be used to guide their
development. To help lead our discussion to something
more practical, we can use the framework to check and
identify aspects that are typically under-emphasized and
move them to center stage in order to improve class-
room instruction. Specifically, the following is a list of
sample under-emphasized norms and practices that can
be identified (Schoenfeld in press).

(1) Establishing a climate of inquiry, in which
mathematics is experienced as a discipline of
exploration and sense making.

(2) Developing students’ ownership of ideas through
the process of developing, sharing, refining, and
using ideas; concepts and language can come later.

(3) Focusing on big ideas, and not losing the forest for
the trees.

(4) Making student thinking central to classroom
discourse.

(5) Ensuring that classroom discourse is respectful and
inviting.

https://truframework.org/


Fig. 2 The domain-general version of the TRU framework
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Where to start? Begin by problematizing teaching
and the nature of learning environments
Here we start by stipulating that STEM disciplines as
practiced, are living, breathing fields of inquiry. Know-
ledge is important; ideas are important; practices are im-
portant. The list given above applied to all STEM
disciplines, not just mathematics.
The issue, then, is developing teacher capacity to craft

environments that have the properties described imme-
diately above. Here we share some thoughts, and the
topic itself can well be discussed extensively in another
paper. To make changes in teaching, it should start with
assessing and changing teaching practice itself (Hiebert
and Morris 2012). Opening up teachers’ perceptions of
teaching practices should not be done by telling teachers
what to do!—the same rules of learning apply to teachers
as they apply to students. Learning environments for
teachers should offer teachers the same opportunities
for rich engagement, challenge, equitable access, and
ownership as we hope students will experience (Schoen-
feld 2015). Working together with teachers to study and
reflect on their teaching practices in light of the TRU
framework, we can help teachers to find out what their
students are experiencing and why changes are needed.
The framework can also help guide teachers to learn
what changes would be needed, and to try out changes
to learn how their students’ learning may differ. It is this
iterative and concrete process that can hopefully help
shift participating teachers’ perceptions of mathematics.
Many tools for problematizing teaching are available at
the TRU web site (see https://truframework.org/). If
teachers can work together with a focus on selected les-
sons like what teachers often do in China, the process
would help form a school-based learning community
that can contribute to not only participating teachers’
practice change but also their expertise improvement
(Huang et al. 2011; Li and Huang 2013).

Notes
As reported before (Li 2018b), publications in the
International Journal of STEM Education show a mix of
individual-disciplinary and multidisciplinary education
in STEM over the past several years. Although one jour-
nal’s publications are limited in its scope of providing a

https://truframework.org/
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picture about the scholarship development related to
mathematics and STEM education, it can allow us to get
a sense of related development.
If taking a closer look at the journal’s publications over

the past three years from 2016 to 2018, we found that
the number of articles published with a clear focus on
mathematics is relatively small: three (out of 21) in 2016,
six (out of 34) in 2017, and five (out of 56) in 2018. At
the same time, we should point out that these publica-
tions from 2016 to 2018 seem to reflect a trend, over
these three years, of moving toward issues that can go
beyond mathematics itself, as what was noted before (Li
2018b). Specifically, for these three articles published in
2016, they are all about mathematics education at either
elementary school (Ding 2016; Zhao et al. 2016) or uni-
versity levels (Schoenfeld et al. 2016). Out of the six
published in 2017, three are on mathematics education
(Hagman et al. 2017; Keller et al. 2017; Ulrich and Wil-
kins 2017) and the other three on either teacher profes-
sional development (Borko et al. 2017; Jacobs et al.
2017) or connection with engineering (Jehopio and
Wesonga 2017). For the five published in 2018, two are
on mathematics education (Beumann and Wegner 2018;
Wilkins and Norton 2018) and the other three have
close association with other disciplines in STEM (Blot-
nicky et al. 2018; Hayward and Laursen 2018; Nye et al.
2018). This trend likely reflects a growing interest, with
close connection to mathematics, in both mathematics
education community and a broader STEM education
community of developing and sharing multidisciplinary
and interdisciplinary scholarship.
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